Level set simulations of turbulent thermonuclear deflagration in degenerate carbon and oxygen

نویسندگان

  • W. Schmidt
  • W. Hillebrandt
چکیده

(Received 00 Month 200x; In final form 00 Month 200x) We study the dynamics of thermonuclear flames propagating in fuel stirred by stochastic forcing. The fuel consists of carbon and oxygen in a state which is encountered in white dwarfs close to the Chandrasekhar limit. The level set method is applied to represent the flame fronts numerically. The computational domain for the numerical simulations is cubic, and periodic boundary conditions are imposed. The goal is the development of a suitable flame speed model for the small-scale dynamics of turbulent deflagration in thermonuclear supernovae. Because the burning process in a supernova explosion is transient and spatially inhomogeneous, the localised determination of subgrid scale closure parameters is essential. We formulate a semi-localised model based on the dynamical equation for the subgrid scale turbulence energy ksgs. The turbulent flame speed st is of the order 2ksgs. In particular, the subgrid scale model features a dynamic procedure for the calculation of the turbulent energy transfer from resolved toward subgrid scales, which has been successfully applied to combustion problems in engineering. The options of either including or suppressing inverse energy transfer in the turbulence production term are compared. In combination with the piece-wise parabolic method for the hydrodynamics, our results favour the latter option. Moreover, different choices for the constant of proportionality in the asymptotic flame speed relation, st ∝ 2ksgs, are investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermonuclear supernovae: simulations of the deflagration stage and their implications.

Large-scale, three-dimensional numerical simulations of the deflagration stage of a thermonuclear supernova explosion show the formation and evolution of a highly convoluted turbulent flame in the gravitational field of an expanding carbon-oxygen white dwarf. The flame dynamics are dominated by the gravity-induced Rayleigh-Taylor instability that controls the burning rate. The thermonuclear def...

متن کامل

ar X iv : a st ro - p h / 00 05 34 1 v 1 1 6 M ay 2 00 0 Thermonuclear Explosions of Chandrasekhar - Mass White Dwarfs Thermonuclear Explosions

We present a new way of modeling turbulent thermonuclear deflagration fronts in Chandrasekhar-mass white dwarfs, consisting of carbon and oxygen, undergoing a type Ia supernova explosion. Our approach is a front capturing/tracking hybrid scheme, based on a level set method, which treats the front as a mathematical discontinuity and allows for full coupling between the front geometry and the flo...

متن کامل

Three-Dimensional Delayed-Detonation Model of Type Ia Supernova

We study a Type Ia supernova explosion using large-scale three-dimensional numerical simulations based on reactive fluid dynamics with a simplified mechanism for nuclear reactions and energy release. The initial deflagration stage of the explosion involves a subsonic turbulent thermonuclear flame propagating in the gravitational field of an expanding white dwarf. The deflagration produces an in...

متن کامل

ar X iv : a st ro - p h / 04 05 20 9 v 1 1 1 M ay 2 00 4 Simulations of Turbulent Thermonuclear Burning in Type Ia

Type Ia supernovae, i.e. stellar explosions which do not have hydrogen in their spectra, but intermediate-mass elements such as silicon, calcium, cobalt, and iron, have recently received considerable attention because it appears that they can be used as “standard candles” to measure cosmic distances out to billions of light years away from us. Observations of type Ia supernovae seem to indicate...

متن کامل

A Subgrid-scale Model for Deflagration-to-Detonation Transitions in Type Ia Supernova Explosion Simulations

Context. A promising model for normal Type Ia supernova (SN Ia) explosions are delayed detonations of Chandrasekhar-mass white dwarfs, in which the burning starts out as a subsonic deflagration and turns at a later phase of the explosion into a supersonic detonation. The mechanism of the underlying deflagration-to-detonation transition (DDT) is unknown in detail, but necessary conditions have b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005